Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heredity (Edinb) ; 132(5): 221-231, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38424351

RESUMO

Efficiency of mosquito-borne disease transmission is dependent upon both the preference and fidelity of mosquitoes as they seek the blood of vertebrate hosts. While mosquitoes select their blood hosts through multi-modal integration of sensory cues, host-seeking is primarily an odor-guided behavior. Differences in mosquito responses to hosts and their odors have been demonstrated to have a genetic component, but the underlying genomic architecture of these responses has yet to be fully resolved. Here, we provide the first characterization of the genomic architecture of host preference in the polymorphic mosquito species, Culex pipiens. The species exists as two morphologically identical bioforms, each with distinct avian and mammalian host preferences. Cx. pipiens females with empirically measured host responses were prepared into reduced representation DNA libraries and sequenced to identify genomic regions associated with host preference. Multiple genomic regions associated with host preference were identified on all 3 Culex chromosomes, and these genomic regions contained clusters of chemosensory genes, as expected based on work in Anopheles gambiae complex mosquitoes and in Aedes aegypti. One odorant receptor and one odorant binding protein gene showed one-to-one orthologous relationships to differentially expressed genes in A. gambiae complex members with divergent host preferences. Overall, our work identifies a distinct set of odorant receptors and odorant binding proteins that may enable Cx. pipiens females to distinguish between their vertebrate blood host species, and opens avenues for future functional studies that could measure the unique contributions of each gene to host preference phenotypes.


Assuntos
Culex , Receptores Odorantes , Animais , Culex/genética , Culex/fisiologia , Feminino , Receptores Odorantes/genética , Comportamento Alimentar , Comportamento Animal
2.
Sci Rep ; 12(1): 15914, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36151130

RESUMO

The ocean is experiencing unprecedented rapid change, and visually monitoring marine biota at the spatiotemporal scales needed for responsible stewardship is a formidable task. As baselines are sought by the research community, the volume and rate of this required data collection rapidly outpaces our abilities to process and analyze them. Recent advances in machine learning enables fast, sophisticated analysis of visual data, but have had limited success in the ocean due to lack of data standardization, insufficient formatting, and demand for large, labeled datasets. To address this need, we built FathomNet, an open-source image database that standardizes and aggregates expertly curated labeled data. FathomNet has been seeded with existing iconic and non-iconic imagery of marine animals, underwater equipment, debris, and other concepts, and allows for future contributions from distributed data sources. We demonstrate how FathomNet data can be used to train and deploy models on other institutional video to reduce annotation effort, and enable automated tracking of underwater concepts when integrated with robotic vehicles. As FathomNet continues to grow and incorporate more labeled data from the community, we can accelerate the processing of visual data to achieve a healthy and sustainable global ocean.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Animais , Biota , Bases de Dados Factuais , Oceanos e Mares
3.
G3 (Bethesda) ; 12(10)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35976120

RESUMO

Infections by maternally inherited bacterial endosymbionts, especially Wolbachia, are common in insects and other invertebrates but infection dynamics across species ranges are largely under studied. Specifically, we lack a broad understanding of the origin of Wolbachia infections in novel hosts, and the historical and geographical dynamics of infections that are critical for identifying the factors governing their spread. We used Genotype-by-Sequencing data from previous population genomics studies for range-wide surveys of Wolbachia presence and genetic diversity in North American butterflies of the genus Lycaeides. As few as one sequence read identified by assembly to a Wolbachia reference genome provided high accuracy in detecting infections in host butterflies as determined by confirmatory PCR tests, and maximum accuracy was achieved with a threshold of only 5 sequence reads per host individual. Using this threshold, we detected Wolbachia in all but 2 of the 107 sampling localities spanning the continent, with infection frequencies within populations ranging from 0% to 100% of individuals, but with most localities having high infection frequencies (mean = 91% infection rate). Three major lineages of Wolbachia were identified as separate strains that appear to represent 3 separate invasions of Lycaeides butterflies by Wolbachia. Overall, we found extensive evidence for acquisition of Wolbachia through interspecific transfer between host lineages. Strain wLycC was confined to a single butterfly taxon, hybrid lineages derived from it, and closely adjacent populations in other taxa. While the other 2 strains were detected throughout the rest of the continent, strain wLycB almost always co-occurred with wLycA. Our demographic modeling suggests wLycB is a recent invasion. Within strain wLycA, the 2 most frequent haplotypes are confined almost exclusively to separate butterfly taxa with haplotype A1 observed largely in Lycaeides melissa and haplotype A2 observed most often in Lycaeides idas localities, consistent with either cladogenic mode of infection acquisition from a common ancestor or by hybridization and accompanying mutation. More than 1 major Wolbachia strain was observed in 15 localities. These results demonstrate the utility of using resequencing data from hosts to quantify Wolbachia genetic variation and infection frequency and provide evidence of multiple colonizations of novel hosts through hybridization between butterfly lineages and complex dynamics between Wolbachia strains.


Assuntos
Borboletas , Wolbachia , Animais , Borboletas/genética , Borboletas/microbiologia , DNA Mitocondrial/genética , Haplótipos/genética , Filogenia , Wolbachia/genética
4.
Philos Trans R Soc Lond B Biol Sci ; 377(1854): 20210121, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35574849

RESUMO

The deep ocean is the largest ecosystem on the planet, constituting greater than 90% of all habitable space. Over three-quarters of countries globally have deep ocean within their Exclusive Economic Zones. While maintaining deep-ocean function is key to ensuring planetary health, deficiencies in knowledge and governance, as well as inequitable global capacity, challenge our ability to safeguard the resilience of this vast realm, leaving the fate of the deep ocean in the hands of a few. Historically, deep-ocean scientific exploration and research have been the purview of a limited number of nations, resulting in most of humankind not knowing the deep ocean within their national jurisdiction or beyond. In this article, we highlight the inequities and need for increased deep-ocean knowledge generation, and discuss experiences in piloting an innovative project 'My Deep Sea, My Backyard' toward this goal. Recognizing that many deep-ocean endeavours take place in countries without deep-ocean access, this project aimed to reduce dependency on external expertise and promote local efforts in two small island developing states, Trinidad and Tobago and Kiribati, to explore their deep-sea backyards using comparatively low-cost technology while building lasting in-country capacity. We share lessons learned so future efforts can bring us closer to achieving this goal. This article is part of the theme issue 'Nurturing resilient marine ecosystems'.


Assuntos
Fortalecimento Institucional , Ecossistema , Ambiente Domiciliar , Oceanos e Mares , Projetos Piloto
5.
Am Nat ; 198(5): E152-E169, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34648398

RESUMO

AbstractMicrogeographic genetic divergence can create fine-scale trait variation. When such divergence occurs within foundation species, then it might impact community structure and ecosystem function and cause other cascading ecological effects. We tested for parallel microgeographic trait and genetic divergence in Spartina alterniflora, a foundation species that dominates salt marshes of the US Atlantic and Gulf coasts. Spartina is characterized by tall-form (1-2 m) plants at lower tidal elevations and short-form (<0.5 m) plants at higher tidal elevations, yet whether this trait variation reflects plastic and/or genetically differentiated responses to these environmental conditions remains unclear. In the greenhouse, seedlings raised from tall-form plants grew taller than those from short-form plants, indicating a heritable difference in height. When we reciprocally transplanted seedlings back into the field for a growing season, composite fitness (survivorship and seed production) and key plant traits (plant height and biomass allocation) differed interactively across origin and transplant zones in a manner indicative of local adaptation. Further, a survey of single nucleotide polymorphisms revealed repeated, independent genetic differentiation between tall- and short-form Spartina at five of six tested marshes across the native range. The observed parallel, microgeographic genetic differentiation in Spartina likely underpins marsh health and functioning and provides an underappreciated mechanism that might increase capacity of marshes to adapt to rising sea levels.


Assuntos
Ecossistema , Plantas , Biomassa , Poaceae , Áreas Alagadas
6.
J Fish Biol ; 97(3): 926-929, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32592495

RESUMO

This study reports the first records of cowsharks (Hexanchidae) in the Galápagos Islands, in particular Notorynchus cepedianus and Hexanchus griseus, observed between depths of 210 and 418 m on footage from free-falling autonomous deep-ocean cameras. These sightings provide new information on the habitat preferences and range distribution for N. cepedianus and the first records of H. griseus in Ecuadorian waters. The findings support the formulation of regional conservation strategies for these large apex predator species and highlight the limited biological knowledge of Galápagos' deep-water ecosystems.


Assuntos
Ecossistema , Tubarões/fisiologia , Animais , Conservação dos Recursos Naturais , Equador , Oceano Pacífico , Tubarões/classificação
7.
Biol Lett ; 15(1): 20180723, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30958212

RESUMO

Many tropical fruit-feeding nymphalid butterflies are associated with either the forest canopy or the understorey; however, the exceptions offer insights into the origins of tropical diversity. As it occurs in both habitats of tropical forests in Ecuador and Peru, Archaeoprepona demophon is one such exception. We compared patterns of occurrence of A. demophon in the canopy and understorey and population genomic variation for evidence of ecological and genetic differentiation between habitats. We found that butterfly occurrences in the canopy were largely uncorrelated with occurrences in the understorey at both localities, indicating independent demographic patterns in the two habitats. We also documented modest, significant genome-level differentiation at both localities. Genetic differentiation between habitat types (separated by approx. 20 m in elevation) was comparable to levels of differentiation between sampling locations (approx. 1500 km). We conclude that canopy and understorey populations of A. demophon represent incipient independent evolutionary units. These findings support the hypothesis that divergence between canopy and understorey-associated populations might be a mechanism generating insect diversity in the tropics.


Assuntos
Borboletas , Animais , Evolução Biológica , Ecossistema , Equador , Florestas , Árvores , Clima Tropical
8.
J Hered ; 110(3): 361-369, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30657932

RESUMO

In recent decades, an increased understanding of molecular ecology has led to a reinterpretation of the role of gene flow during the evolution of reproductive isolation and biological novelty. For example, even in the face of ongoing gene flow strong selection may maintain divergent polymorphisms, or gene flow may introduce novel biological diversity via hybridization and introgression from a divergent species. Herein, we elucidate the evolutionary history and genomic basis of a trophically polymorphic trait in a species of cichlid fish, Herichthys minckleyi. We explored genetic variation at 3 hierarchical levels; between H. minckleyi (n = 69) and a closely related species Herichthys cyanoguttatus (n = 10), between H. minckleyi individuals from 2 geographic locations, and finally between individuals with alternate morphotypes at both a genome-wide and locus-specific scale. We found limited support for the hypothesis that the H. minckleyi polymorphism is the result of ongoing hybridization between the 2 species. Within H. minckleyi we found evidence of geographic genetic structure, and using traditional population genetic analyses found that individuals of alternate morphotypes within a pool appear to be panmictic. However, when we used a locus-specific approach to examine the relationship between multi-locus genotype, tooth size, and geographic sampling, we found the first evidence for molecular genetic differences between the H. minckleyi morphotypes.


Assuntos
Ciclídeos/genética , Genética Populacional , Genoma , Genômica , Animais , Fluxo Gênico , Variação Genética , Genômica/métodos , Polimorfismo Genético
9.
Mol Ecol ; 27(4): 959-978, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29319908

RESUMO

Hybrid zones provide unique opportunities to examine reproductive isolation and introgression in nature. We utilized 45,384 single nucleotide polymorphism (SNP) loci to perform association mapping of 14 floral, vegetative and ecological traits that differ between Iris hexagona and Iris fulva, and to investigate, using a Bayesian genomic cline (BGC) framework, patterns of genomic introgression in a large and phenotypically diverse hybrid zone in southern Louisiana. Many loci of small effect size were consistently found to be associated with phenotypic variation across all traits, and several individual loci were revealed to influence phenotypic variation across multiple traits. Patterns of genomic introgression were quite heterogeneous throughout the Louisiana Iris genome, with I. hexagona alleles tending to be favoured over those of I. fulva. Loci that were found to have exceptional patterns of introgression were also found to be significantly associated with phenotypic variation in a small number of morphological traits. However, this was the exception rather than the rule, as most loci that were associated with morphological trait variation were not significantly associated with excess ancestry. These findings provide insights into the complexity of the genomic architecture of phenotypic differences and are a first step towards identifying loci that are associated with both trait variation and reproductive isolation in nature.


Assuntos
Mapeamento Cromossômico , Genoma de Planta , Hibridização Genética , Gênero Iris/genética , Característica Quantitativa Herdável , Isolamento Reprodutivo , Teorema de Bayes , Variação Genética , Modelos Lineares , Louisiana , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal , Probabilidade
10.
PLoS One ; 12(5): e0176989, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28562656

RESUMO

Temporal isolation remains an understudied, and potentially under-appreciated, mechanism of reproductive isolation. Phenological differences have been discovered in populations of the pine white butterfly (Neophasia menapia), a typically univoltine species found throughout western North America. At two locations in the Coast Range of California there are two periods of adult emergence per year, one in early summer (July) and one in late summer/autumn (September/October). Differences in flight time are accompanied by differences in wing shape and pigmentation. Here we use a combination of population genomics and morphological analyses to assess the extent to which temporal isolation is able to limit gene flow between sympatric early and late flights. Not only did we detect both genetic and morphological differences between early and late flights at the two sites, we also found that the patterns of differentiation between the two flights were different at each location, suggesting an independent origin for the two sympatric flights. Additionally, we found no evidence that these sympatric flights originated via colonization from any of the other sampled localities. We discuss several potential hypotheses about the origin of these temporally isolated sympatric flights.


Assuntos
Borboletas/genética , Animais , Borboletas/anatomia & histologia , California , Genética Populacional , Pinus
11.
Ecol Evol ; 6(11): 3684-3698, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27186367

RESUMO

Introgression might be exceptionally common during the evolution of narrowly endemic species. For instance, in the springs of the small and isolated Cuatro Ciénegas Valley, the mitogenome of the cichlid fish Herichthys cyanoguttatus could be rapidly introgressing into populations of the trophically polymorphic H. minckleyi. We used a combination of genetic and environmental data to examine the factors associated with this mitochondrial introgression. A reduced representation library of over 6220 single nucleotide polymorphisms (SNPs) from the nuclear genome showed that mitochondrial introgression into H. minckleyi is biased relative to the amount of nuclear introgression. SNP assignment probabilities also indicated that cichlids with more hybrid ancestry are not more commonly female providing no support for asymmetric backcrossing or hybrid-induced sex-ratio distortion in generating the bias in mitochondrial introgression. Smaller effective population size in H. minckleyi inferred from the SNPs coupled with sequences of all 13 mitochondrial proteins suggests that relaxed selection on the mitogenome could be facilitating the introgression of "H. cyanoguttatus" haplotypes. Additionally, we showed that springs with colder temperatures had greater amounts of mitochondrial introgression from H. cyanoguttatus. Relaxed selection in H. minckleyi coupled with temperature-related molecular adaptation could be facilitating mitogenomic introgression into H. minckleyi.

12.
Oecologia ; 48(2): 145-150, 1981 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28309792

RESUMO

Nitrogen contents and allocation were examined in winter annuals at two Mojave Desert sites near Boulder City, Nevada. Application of 10 g N m-2 as NH4NO3 increased production 0- to 7-fold in species growing on a sandy soil (an Entisol) but fertilizer had no effect on plants on an alluvium (an Aridisol). Tissue nitrogen comprised 0.09-3.5% of dry weight with the lowest concentrations found in vegetative organs of nitrogen-responsive plants. During development, nitrogenpoor species showed only minor changes in nitrogen concentration and allocation compared with more nitrogen-rich species. Maximum reproductive nitrogen allocation varied among species from 43 to 67%, while reproductive biomass allocation was 31 to 51%. Fertilizer increased reproductive biomass allocation by 7 to 16%, reproductive nitrogen concentrations by 120 to 260%, and eaf and root nitrogen concentrations by 200 to 615% in nitrogen-deficient plants. Nitrogen-poor plants appear to allocate nitrogen to reproduction at the expense of vegetative organs throughout the life cycle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...